Synchronizing Inforum Models

Frank Hohmann

GWS mbH Osnabrück, Germany

12th INFORUM World Conference, Italy 2004
Overview

(1) Project Description
(2) Approaches for Linking Models
(3) Inter-Process Communication (IPC) functions on Win32 platforms
(4) Passing Data between Models
(5) Control Flow in Synchronized Models
(6) Conclusion
(1) Project Description

• Project financed by IAB (Institut für Arbeitsmarkt und Berufsforschung, engl. Institute for Employment Research)

• Goal: Linkage of two models
 ➢ GINFORS (Global Interindustry Forecasting System)
 • Part of EU project MOSUS (Modeling Opportunities and Limits For Restructuring Europe towards Sustainability)
 • Built for forecasting energy use, CO2 emissions, material consumption and land use
 • Uses official data sources only (like OECD)
 • Contains 53 country models (20-30 with IO)
 ➢ INFORGE (Interindustry Forecasting Germany)
(2) Approaches for Linking Models
(Page 1 of 2)

1. Solving models in batch mode, linkage through databases
 + Models can be maintained / improved independently
 - Models do not solve simultaneously
 - Solving is slow

2. Merging models’ sources (& databases)
 - Models can NOT be maintained / improved independently
 + Models solve simultaneously iteration by iteration
 + Solving is fast
(2) Approaches for Linking Models (Page 2 of 2)

1. Synchronizing models through IPC (Inter-Process Communication) functions
 • IPC functions are available on multi-tasking operating systems (like Win2K/XP, Linux)
 • Used for synchronizing processes (e.g. word processor and printer spooler)
 • Approach combines advantages of 1. and 2., avoids disadvantages, thus:
 + Models can be maintained / improved independently
 + Models solve simultaneously on iteration-by-interation basis
 + Solving is fast
(3) Inter-Process Communication (IPC) functions on Win32 platforms

• CreateEvent
 ➢ Creates an event data type for sending signals between processes, identified by a string

• SetEvent / WaitForSingleObject
 ➢ Sends / waits for a signal

• CreateFileMapping / OpenFileMapping
 ➢ Creates / opens a shared memory area, identified by a string

• MapViewOfFile
 ➢ Obtains a pointer to the shared memory area
(4) Passing Data between Models

(Page 1 of 2)

- Interdyme data structures (Tseries, Vector, Matrix) are not known at operating system level
 - Define a struct containing a list of variables to be shared

```
typedef struct _SharedData
{
    float TSVar;       // Tseries variable
    float VecVar[n];  // Vector variable
    float MatVar[n][m]; // Matrix variable
    ...
    // Flags indicating whether a model converged or not
    bool isGinforsReady, isInforgeReady;
} SharedData;
```
(4) Passing Data between Models
(Page 2 of 2)

- Type-cast pointer returned by MapViewOfFile to point to previously defined data structure

 `SharedData *psd = (SharedData*) MapViewOfFile(...);`

- Shared variables can now be accessed as follows:

 Reading data (LHS: Interdyme, RHS: Shared Memory)

  ```
  TSVar = psd->TSVar;
  VecVar[n] = psd->VecVar[n];
  MatVar[n][m] = psd->VecVar[n][m];
  ```

 Writing data (LHS: Shared Memory, RHS: Interdyme)

  ```
  psd->TSVar = TSVar;
  psd->VecVar[n] = VecVar[n];
  psd->MatVar[n][m] = VecVar[n][m];
  ```
(5) Control Flow in Synchronized Models

GINFORS

void loop()
{
 ...
 top:
 // Calculations
 SetEvent(hExec)
 WaitForSingleObject(hDone)
 // Convergence test
}

INFORGE

void loop()
{
 ...
 top:
 // Calculations
 WaitForSingleObject(hExec)
 // Convergence test
 SetEvent(hDone)

write data read data control flow

©2004 GWS mbH
(6) Conclusion

- Models can by synchronized with minimal effort
 - ~ 10 lines of code have to be added to each model
- Models can be maintained / improved independently
 - Synchronization can be deactivated by using #ifdef’s
- Synchronization can be used for lots of applications
 - Country model synced to Global model
 - Regional model synced to Country model
 - Country model synced to Country model